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Abstract  :  

In this paper, a customer incentive scheme is proposed for retailers to build an effective demand response program over 

the peak demand period to minimize the financial risk. Firstly, an objective function is formulated based on the market 

operation and an optimal incentive price is derived from this objective function. Secondly, the incentive price is 

employed as a part of an incentive scheme to encourage customers to reduce their electricity demand to a certain level 

during peak hours. Two typical customer response scenarios are studied to investigate the impact of customer response 

sensitivity on the loss of utilities’ and customers’ profit. Finally, a dataset for the state of New South Wales, Australia is 

employed as a case study to examine the effectiveness of the proposed scheme. The obtained results show that the 

proposed scheme can help to improve the elasticity of demand significantly thereby reducing the associated financial 

risk greatly. Moreover, the proposed scheme allows customers to get involved voluntarily and maximize their profits 

with minimum reduction of their comfort levels. 
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1. Introduction 

Electric power system is operated based on a strict, 

simultaneous balance between demand and generation. 

To match peak demand following seasonal and daily 

fluctuations, and to ensure reliable operation of the 

electric power system, a substantial number of high 

marginal cost generators are upheld to serve the 

requisite demand in a short term period [1]. Also, in 

order to serve short term peak load, huge investments 

need to be made in transmission and distribution 

networks [2]. This utilization of assets contributes to 

one of the biggest portions of the electricity price. In 

addition, generators serving peak load demand may use 

fossil fuels such as gas and diesel as primary energy 

sources, which may be detrimental to the environment. 

Furthermore, with constraints related to intermittency 

and uncertainty of generation, peak demand may 

surpass the capacity of all available power plants 

together, and this may influence the security of power 

system. In order to tackle these issues, demand 

response (DR) program can be considered as an 

effective solution [3]. DR can offer not only a cost-

effective alternative to meet the peak and/or occasional 

demand spikes but also a mean to avoid system 
emergencies. 

Recently, numerous research studies have been 

carried out on the applicability of DR schemes [4], [5]. 

In general, DR can be categorized into time-based DR 

and incentive-based DR [6]. Time-based DR refers to 

reduction in customer demand for price rise signals [7], 

and it includes two popular strategies which are time of 

use (TOU) pricing [8] and real-time pricing [9]. In the 

TOU scheme, electricity price is set to be significantly 

higher during peak periods thereby motivating the 

consumers to shift the demand from a peak period to 

off-peak period. The shifting process can be optimized 

using various methods such as heuristic approach [10], 

stochastic security constrained unit commitment 

method [11], or game theory [12]. These optimization 

algorithms help to shift demand effectively ensuring 

continuity of supply to the load. However, simply 

shifting loads to certain off-peak hours may not have 

much influence on the financial benefit to utilities and 

customers [13]. Furthermore, it could eventuate into 

peak loading condition at a new time period, which 

invalidates the load shifting strategy [14], [15]. Real-

time pricing, with utilization of the automatic metering 

infrastructure, can help solve above-mentioned 

problem [16]. The real-time pricing may enhance 

competitiveness in the market and encourage more 

bidding activities in the market [17], [18]. Furthermore, 

real-time pricing scheme can consider the participation 

of new source like electric vehicle in the bidding 

process [19], [20]. However, the real-time pricing 

scheme may cause more volatility to the market 

operation since small changes in price signal may 

result into massive changes to customer payments.  

Unlike time-based DR, incentive-based DR refers 

to customers receiving payments or preferential prices 

from reducing electricity usage during periods wherein 

system experiences stress in meeting the customer 

demand. One of the popular incentive-based DR 

programs is direct load control [21] under which utility 

or system operator remotely shuts down or cycles 

customers’ electrical equipment on short notice. In 

order to improve the performance of DR, cooperation 

between loads can be integrated via multiple layers of 

control strategy [22], [23]. Although customers’ 

appliances can be turned off a number of times per year 

or season, the DR scheme proposed in [22] enforces 

customers to turn off appliances on request, which may 

not be a convenient option for customers. Recently in 

[24], a coupon incentive scheme was introduced to 

encourage small scale customers in reducing the load 

in peak price period. This scheme is operated based on 

the voluntary basis and customers can earn coupon 

credit for reducing the demand when system needs, 

thus it is more flexible for the customers to decide 

whether to participate or not. However, the 

consideration of customer response is limited by linear 

response assumption thus it may not be sufficient in 

evaluating the influence of customers’ types on the 

effectiveness of the proposed scheme. 

In this paper, a customer incentive scheme is 

proposed for building an effective incentive-based DR 

program. In this program, an incentive scheme is 

proposed with an incentive price to encourage 

customers to reduce the electricity demand quantity to 

a certain level when price spikes are detected. An 

optimization problem is formulated to minimize 

utilities’ financial losses based on changing the offered 

incentive price. Linear approach was employed to 

solve the problem and the optimum incentive price is 

determined at a point where utility loss is at minimum 

level. Furthermore, it is revealed that customers’ 

responses do have strong impacts on the optimization 

process of the proposed scheme. Consequently, two 

typical customers’ response scenarios which are linear 

and restricted responses are investigated. The main 

findings of the paper and their significance are listed 

below: 

 A customer reward-based demand response strategy 

is proposed to improve the elasticity of electricity 

demand. 

 An optimization problem is formulated to minimize 

the financial losses incurred by the utilities with the 

aid of a newly proposed customer incentive 

scheme. 

 Two typical customers’ response scenarios; namely 

linear response and restricted response are 

investigated. 

 For a higher sensitivity of customers’ response, it is 

found that the optimum incentive price and utility 

losses are lower. 
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The paper is organized as follows. Section 2 

presents the problem description relating to the 

inefficiency of peak load demand and uncertainty of 

renewable generation. Section 3 introduces a customer 

incentive scheme for developing an effective DR 

program. Section 4 provides experimental results and 

discussions. Section 5 highlights the concluding 

remarks of the paper. 

2. Problem Description  

Current electricity market may suffer from two main 

challenges in utilizing the generation units. The first 

one is reserving a number of expensive generators to 

match the peak load in very short period each year. 

Since these generators are only operated occasionally, 

they are inefficient and they impose high electricity 

price to customers’ bill. The second challenge is the 

increasing uncertainty in generation capacity when 

more intermittent renewable energy sources such as 

wind power participate in the electricity market. This 

uncertainty can cause sudden reduction of generation 

and lead to spikes in electricity prices. Accordingly, it 

creates increasing financial risks for utilities. 

2.1. Inefficient Peak Load Period 

To match peak demand following seasonal and daily 

fluctuations, and to ensure reliable operation of the 

electric power system, utilities are forced to maintain a 

substantial amount of underutilized power capacity [1]. 

The generation serving in this period is highly marginal 

cost generators [25]. In addition, transmission and 

distribution assets need to be built to meet peak 

demands. Therefore, high peak demands contribute to 

one of the biggest portions of electricity price [2]. For 

illustration, the aggregated demand for New South 

Wales (NSW), Australia which is acquired from 

Australian energy market operators (AEMO) [26] for 

year 2015 is presented in Fig. 1. 

It can be seen from Fig. 1 that about 20% of 

capacity is used to serve peak load demand which 

contributes to only 5% time of operation in a year. In 

order to maintain the balance between demand and 

generation, high marginal operating cost generators are 

needed to fulfil the need of peak demand. For example, 

in order to supply to peak demand in summer season, 

Australian gas light company has proposed to build a 

new gas power plant in South Australia (SA) [27]. On 

the one hand, the plan helps to handle the peak load, 

and avoid the blackout during peak demand. On the 

other hand, operation of these generators is 

uneconomic because they usually have extremely high 

marginal operating cost. In addition, they are operated 

using fossil fuel so they are not friendly to ecosystem. 

As a result, deployment of such generators causes 

reduction in economic benefit and brings more 

impairment to environment. 

 
Fig. 1. Aggregated demand at different serving duration 

in 2015 for NSW, Australia 
 

f (G1)

P1

Quantity 

P
ri

ce

P0

Q0

f (G0)

 
Fig. 2. Price jump due to reduction of low marginal cost 

generation 

2.2. Generation Uncertainty 

The participation of renewable energy resources in 

generation mix is boosted dramatically in recent years 

with different programs and agreements among 

countries around the world. Such a scenario is expected 

to make significant contribution in decreasing 

greenhouse gas emissions originating from fossil-

fueled power plants. However, wind generators 

introduce more uncertainty in the power system due to 

inherent intermittency of wind power. This uncertainty 

could cause sudden reduction in generation capacity 

and thus lead to a huge shift of generation bidding 

curve. Also, it creates a huge jump of electricity price 

in the spot market. The influence of a wind generation 

is illustrated in Fig. 2. 

It can be seen from Fig. 2 that at the normal 

condition, a quantity Q0 , which is required by 

customers, is bought by utilities at a spot price P0 , 

which is determined by the matching point between 

quantity Q0 and generation represented by the bidding 

curve f(G0). If there is a sudden reduction in cheap 

generation (i.e., wind generation), the bidding curve 

shifts to the left with the new position represented by 

f(G1). If the demand remains at Q0, the spot price 

jumps from the normal price P0 to a spike value of P1 

which may be extremely higher than the retail price. As 

a result, utilities may suffer from short-term financial 

loss when it is forced to buy electricity at higher price 

and sell at lower price to maintain the security of the 

95



 1397 ستانزم -چهارم هشمار -ال پانزدهمس -مجله انجمن مهندسي برق و الکترونيک ايران  

Jo
u
rn

al o
f Iran

ian
 A

sso
ciatio

n
 o

f E
lectrical an

d
 E

lectro
n
ics E

n
g
in

eers - V
o
l.1

5
- N

o
4
-W

in
ter 2

0
1
8
 

 

 

 

 

system within the occurrence of spikes. Furthermore, 

sudden reduction of wind generation can lead to lack of 

generation in peak demand, thus cause serious problem 

that may lead to system blackout. For example, the 

occurrence of partial load shedding blackout in SA on 

8th of February 2017 [28] is due to lack of generation 

when load demand was peaking on a hot day but wind 

did not flow and thus wind generators could not 

produce electricity. 

2.3. Demand Elasticity Opportunity 

Peak load causes more ineffective investment on 

generators and network infrastructure, which 

consequently boost the electricity price at the retail 

level. Furthermore, the renewable generation such as 

wind power may not be coincident with peak load, so it 

cannot solve the problem. On top of that it may 

introduce more uncertainty into the market thus pushes 

utilities to expose to more financial risk, and impacts 

the security of the power system. In order to tackle the 

above-mentioned issues, elasticity of demand should 

be improved. When demand can be adapted to cope 

with short fall of generation, the balance of the system 

can be maintained healthily, and market can be 

operated efficiently. For example, the financial benefit 

for utilities arising from demand elasticity is given in 

Fig. 3. 

The benefit of demand response which is presented 

in Fig. 3 is explained as follows. In the normal 

operation, generation bidding can be considered as a 

function of price G1=g1(P), and the quantity of demand 

is at Q0. Consequently, the utilities buy Q0 at a spot 

price Ps0 and sell to customers at a retail price Pr, 

which is higher than Ps0, and earn profit from this 

trading process. When there is a sudden reduction in 

cheap generation, the bidding curve is shifted to a new 

position, which is represented by G2=g2(P). This shift 

of bidding curve cause the spot price to change from 

Ps0 to Ps1, which is much higher than the fixed retail 

price Pr. As a result, utilities are exposed to financial 

risk with a huge trading loss. In order to reduce this 

loss, utilities will somehow convince customers to 

reduce the demand ΔQ from Q0 to Q1. With this 

demand reduction, the spot price reduces from Ps1 to 

Ps2, thus it decreases the trading loss for utilities. 

3. Customer Incentive Scheme 

The DR algorithm proposed in this study is based on a 

customer incentive scheme which allows utilities to 

communicate with customers for an agreement on 

reducing demand to mitigate spot price spikes. 

3.1. Conceptual Design 

Utilities buy electricity from a spot market and sell it to 

customers in a retail market. In other words, utilities 

are involved into two markets, which are the spot 

market and retail market. The participation of one 

utility can be briefly described as in Fig. 4. 

 

 

 
Fig. 3. Demand elasticity to reduce spike prices 

 

(Q-ΔQ)Ps

Spot Market Utility Customers
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(Q-ΔQ)

(Q-ΔQ)Pr
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 Δ
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P
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Δ
Q

Δ
Q

P
c

Financial Flow Information FlowPower Flow

 
Fig. 4. Conceptual diagram of proposed customer 

incentive scheme 

 

The concept of the proposed customer incentive 

scheme is presented as follows. In the normal 

condition, the reduction of quantity ΔQ is zero, thus 

utilities buy a quantity Q from spot market at a spot 

price Ps and sell it to the customers at a retail price Pr 

which is higher than Ps. From this trading process, 

utilities earn a trading profit which can be presented as 

follows (assuming the demand and price remain the 

same for one hour, so the profit is for one hour energy 

consumption): 

 Profit   r sQ P P   (1) 

In a critical market condition such as peak load 

demand or sudden reduction of cheap energy sources, 

the spot price Ps suddenly increases to a spike value, 

which is higher than the retail price Pr. As a result, 

utilities may suffer from negative profit or loss:  

{Loss = Profit = Q(PsPr)}. It is assumed that for 

the dependence of spot price Ps on demand quantity Q 

in this incident following a given function Ps = f(Q), the 

trading loss for utilities is represented as follows:  

  Loss    rQ f Q P   (2) 

In order to reduce this loss, utilities introduce a 

customer incentive scheme (which can be described as 

an additional block “incentive” in Fig. 4). In this 

scheme, utilities encourage customers to reduce a 

demand quantity ΔQ by paying them an incentive price 

Pc for each unit of quantity reduction. This reduction 

reduces the trading demand quantity between spot 

market and retail market from Q to (Q ΔQ), thus 

moderates the spot price from f(Q) to f(Q ΔQ). The 

new total financial losses for utilities can be 

represented as follows:  

    Loss        r cQ Q f Q Q P Q P   (3) 
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The new total financial loss in (3) includes two 

main components, which are trading loss 

(QΔQ)(f(QΔQ)Pr) and incentive payments 

ΔQPc, which utilities have to pay to customers to 

encourage them to reduce demand quantity ΔQ. By 

changing the value of incentive price Pc, utilities can 

estimate the new loss and minimize the total financial 

loss accordingly. 

3.2. Algorithm and Optimization 

The algorithm of the proposed scheme can be 

summarized as follows. Utilities continuously monitor 

the conditions of the electricity market to detect price 

spikes. If a spike incident is detected, utilities trigger a 

customer incentive scheme with an incentive price Pc 

to encourage customers to reduce electricity quantity 

ΔQ. Accordingly, the total financial loss for utilities 

may vary with the incentive price they offer. Utilities 

may change the value of Pc until their total financial 

loss is minimized. The summary of the proposed 

algorithm is given in Fig. 5. 

It can be seen from the above algorithm that the 

aim of the scheme is to minimize the total financial 

losses for utilities by changing incentive price Pc. 

Therefore, the objective function can be described as 

follows:  

     min:      
c

r c
P

Q Q f Q Q P Q P   (4) 

   

max0

subject to 0

0

   



   

c

Q Q

P

f Q Q f Q

  (5) 

The first constraint means that the reduction is not 

negative, and it has an upper limit depending on actual 

consumption of customers. In the second constraint, 

the incentive price should be greater than or equal to 

zero so that customers are encouraged to participate. 

The last constraint implies that the spot price after 

demand reduction is positive and it is smaller than the 

original price spike. 

The success of the incentive program is heavily 

dependent the estimation of the function representing 

the relationship between spot price and electricity 

demand quantity. This relationship can be estimated 

from the bidding information of generator (e.g. 

presented in Fig. 7). In the context of this paper, the 

relationship is assumed to follow an exponential 

equation (uplift behavior), inferred from [29], which is 

given below:  

    1 0

0 1 0

  
  

 
    f a a e   (6) 

where, a0, a1, α0, α1 are constant. ζ is the level of 

electricity demand. f(.) represents the function of the 

electricity spot price. 

Furthermore, it can be seen from the conceptual 

operation of the proposed customer scheme in Fig. 4 

that the customers’ response is crucial to the operation 

of the proposed scheme. Customer response can be 

investigated using different scenarios as discussed in 

the following subsection. 

3.3. Customer Response Scenarios 

In a customer incentive scheme, it is crucial to estimate 

the response behavior of customers to an incentive 

payment. The estimation can be achieved using a 

stochastic model [30], and it may be dependent on 

types of load and its location, etc. However, the actual 

data for this response is not available, thus the response 

is assumed to follow some predefined function. In this 

paper, two typical responses which are linear response 

and restricted response are considered. 

3.3.1. Linear response 

The response of customers can be simplified using a 

linear relationship representation as in [24]. With this 

assumption, the response is linearly proportional to the 

incentive payment and it can be modelled as follows:  

   r cQ k Q P   (7) 

where, ΔQ is the response of customers Q, is the 

quantity of demand, Pc is incentive price and kr is a 

non-negative constant indicating the response slope 

which represents the sensitivity of the customers’ 

response and reflects customers groups. 

It is noted in (7) that, 0 ≤ ΔQ ≤ Q and Pc ≥ 0 are 

applied. At a specific demand quantity from one 

customer group kr, the response of customers is linearly 

dependent on the offered incentive price Pc. 

3.3.2. Restricted response 

From the customers’ perspective, the reduction of an 

electricity quantity may influence their outcome 

product (or customer’s comfort). Consequently, the 

response of customers may be restricted to the outcome 

product achievement. In this subsection, an elaborated 

 

- Estimate financial loss

- Initiate the incentive price

Invite customers to 

participate

Participation results
Introduce new 

incentive price

Minimum loss

End

Detect spikes or abnormal incidents

No

Yes

 
Fig. 5. Demand elasticity to reduce price spikes 
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case of customers’ response is considered by letting 

customers to actively maximize financial benefit from 

their response. 

If at the beginning, customers buy a demand 

quantity Q at price Pr, and they produce an outcome 

product which is described as a predetermined function 

of consumption h(Q). The profit of customers is 

estimated as follows:  

 0    rW h Q Q P   (8) 

When customers participate in the incentive 

program and reduce the electricity quantity ΔQ, the 

outcome product, and the electricity cost reduce to  

h(Q − ΔQ) and (Q − ΔQ)× Pr respectively. At the same 

time, customers receive an incentive payment from 

utilities ΔQPc. Consequently, the new profit of 

customers is as follows:  

   1           cr
W h Q Q Q Q P QP   (9) 

Customers aim to maximize their own profit thus 

the objective function from the customers side is given 

as follows:  

    max


       crQ
h Q Q Q Q P QP  (10)  

   

0

subject to 0

0

  



   

c

Q Q

P

h Q Q h Q

  (11) 

The first constraint means that the reduction is not 

negative, and it has an upper limit depending on actual 

consumption of customers. In the second constraint, 

the incentive price should be greater than or equal to 

zero so that customers are encouraged to participate. 

The third constraint implies that the outcome product 

of customers is not negative and it has an upper 

limitation. 

In this maximization process, it is important to 

estimate the dependence of outcome product of 

customers on electricity quantity h(Q). For 

simplification, the outcome product can be modelled as 

a logarithmic function, derived based on the clustering 

approach proposed in [31], of the quantity of electricity 

as given below: 

  0
0

0

log
  




  
    

 
h k h  (12)  

where, k and β are constant. k × h0 = k × (Q × Pr) is the 

estimate of original profit. ζ is the electricity demand 

and ζ0 is the minimum level of electricity demand. The 

reason for this function selection is that the outcome 

product may increase quickly at the beginning, but 

reach to some limitation at some certain level of 

electricity consumption. This is explained with further 

details and result demonstration in Subsection 4.3. 

4. Results and Discussions 

In this section, a dataset for NSW, Australia is acquired 

to validate the proposed scheme. The scheme is tested 

in both scenarios of customers’ responses which are 

linear response and restricted response. 

4.1. Data Description 

A demand and price dataset for NSW, Australia which 

is acquired from AEMO [26] is used to validate the 

proposed model in this study. More specifically, the 

dataset for 12th of July 2016 is in consideration and the 

variation of demand and price in this dataset is plotted 

in Fig. 6. 

It can be seen from Fig. 6 that electricity price 

follows electricity demand closely. It tends to go up 

when there is a rise in demand, and tends to go down 

when demand decrease. It is noted from the above 

figure that price experiences a spike of nearly 300 

$/MWh at 18:30 hrs. This is mainly due to the high 

value of demand at this time. It is noted that the spot 

price surpasses the retail price at this moment. The 

information about demand level, spot price and retail 

price are given in Table I. In this table, while spot price 

is acquired from AEMO, the retail price is obtained 

from the annual report for a typical retail customers of 

NSW from the Australian energy market commission 

(AEMC) [32]. 

It can be seen from Table 1 that the spot price is 

much higher than the retail price. In this incident, if 

utilities buy 10586.72 MW with a price of 299.8 

($/MWh) and sell it with a price of 221.9 ($/MWh), 

they suffer the loss of 10,586.72 MW×(299.8$ –

221.9$)= 824,705.49 $ each hour. 

 
Fig. 6. Profiles of electricity demand and price on 12th of 

July 2016 

  
Table. 1. 

Number of spikes and non-spikes in training dataset 

Day Time 
Demand 

(MW) 

Spot price 

($/MWh) 

Retail price 

($/MWh) 

12th of Jul 2016 8:30 hrs 10586.72 299.8 221.9 
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In order to reveal the information of spot price, the 

bidding data have been acquired from AEMO for this 

data point. The obtained bidding curve is given in Fig. 

7. Also, in this figure, the bidding data is fitted against 

the price function following (6) and the fitted line is 

presented as a red continuous line. Furthermore, 

demand requirement from NSW is plotted as a dashed 

black line. The meeting point between demand and 

generation from the bidding curve results in a present 

spot price. 
 

It can be seen from Fig. 7 that if electricity quantity 

decreases, the spot price may reduce significantly. 

Now, it is assumed that the utilities can trigger the 

customer incentive program and encourage customers 

to reduce the demand. The next step is to determine the 

response from the customers. As discussed in Section 

3.3, customers may have different response strategies, 

and each strategy may have strong impacts on the 

scheme application. Two typical schemes namely 

linear response and restricted response, which have 

been discussed in Section 3.3, are investigated in the 

following subsections. 

4.2. Linear Response of Customers 

In this subsection, the response from customers is 

assumed to be linearly dependent on the incentive 

payment as described in (7). With this dependence, 

financial losses for utilities are analyzed and sensitivity 

of customers’ response is investigated. 

4.2.1. Analysis of Financial Losses for Utilities 

Utilities financial losses, including two components 

namely trading loss and incentive payment, can be 

greatly impacted by changes of incentive price 

following equation (3). These two components together 

with the total financial loss for utilities are estimated at 

different levels of incentive price and the results are 

presented in Fig. 8. It is noted that the response 

sensitivity of customers (i.e. slope kr in (7)) is assumed 

to be at a typical value of 0.0015. 

Fig. 8 shows linear relationship between incentive 

price and customers’ response. As a result, the 

incentive payment incurred by utilities sees a quadratic 

growth (as presented as the green dash-dot line). At the 

same time, demand quantity reduction leads to the 

decline of spot price and thus creates drop in trading 

loss for utilities as shown using the black dashed line in 

Fig. 8. 

The summation of trading loss with incentive 

payment results in the total financial loss for utilities as 

presented in the continuous blue line. It is clear that 

this total financial loss reduces significantly when 

incentive price increases from $0/MWh to $131/MWh; 

however after this incentive price, the loss reverses and 

starts to increase. From the variation of the total 

financial loss for utilities, a minimum value can be 

determined as presented as the red star point. At this 

point, incentive price is $131/MWh (i.e., about half of 

the retail price), and customers reduce 2,080 MW (i.e., 

about 19.6% of the demand quantity). This reduction 

leads to the significant drop of utilities’ financial loss 

as presented at the red star point in Fig. 8. It is noted 

that the total financial loss turns to be negative 

meaning that utilities can earn profit again with the 

proposed incentive scheme. 

4.2.2. Analysis of Customers’ Response 

Sensitivity 

To reveal the dependence of financial loss for utilities 

on the response sensitivity, sensitivity level (kr) is 

varied from 0.001 to 0.005. The results are obtained 

and presented in Fig. 9.  

Fig. 9 shows that at each response sensitivity level, 

the relationship between financial loss and incentive 

price changes considerably. Accordingly, the obtained 

optimum incentive price and minimum financial loss 

for utilities are altered. With higher sensitivity (i.e. 

higher value of kr), the optimum incentive price 

becomes lower. At the same time, the minimum utility 

loss has reduced noticeably with the higher response 

 
Fig. 7. Dependence of spot price on electricity quantity 

(demand) 

 

 
Fig. 8. Utility loss and linear customers’ response at 

different incentive prices 
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sensitivity. The optimization results for different slope 

kr are given in Fig. 10. 

Fig. 10 shows that when the sensitivity of customer 

response is stronger (i.e., higher value of slope kr), both 

the optimum incentive price and minimum financial 

loss for a utility becomes smaller. 

 
Fig. 9. Impacts of customers’ response sensitivity to total 

financial loss for utilities 

 
Fig. 10. Optimum incentive price and total financial loss 

for utilities at different sensitivity levels 

 

4.3. Restricted Response from Customers 

Although linear response from customers is handy, it 

may be too naïve for actual application. In this 

subsection, the customers’ response is assumed to be 

restricted with a given outcome product loss scenario 

which has been discussed in Subsection 4.3.2. 

4.3.1. Outcome Product Losses for Customers 

The outcome product losses for customers are 

described in (12). In this equation, it is assumed that 

the customers may have less profit if customer demand 

reduces. The parameters of equation (12) can be 

determined based on the customer information. 

Typically, it can be assumed that coefficients k and β 

are 1 and 100, respectively. The outcome product 

together with electricity bill and customer profit change 

along with the variation of electricity quantity 

consumption as presented in Fig. 11. 

It can be seen from Fig. 11 that while the electricity 

bill increases linearly, the outcome product experience 

logarithmic growth along with the electricity quantity. 

The profit of customer is determined by subtracting the 

outcome product to the electricity bill; consequently, 

the profit of customers increases strongly at the 

beginning, but does not increase much when electricity 

quantity increases (as shown in the red dash-dot line). 

This profit representation limits the level of energy use 

of customers in normal condition because the 

customers cannot gain more profit even if they try to 

buy more electricity. 

 
Fig. 11. Outcome product, electricity bill and profit for 

customers at different levels of electricity quantity 

4.3.2. Cost Effective Analysis 
The response of customers is strongly dependent on 

incentive price offered by utilities. With three typical 

incentive prices of $40/MWh, $60/MWh and 

$80/MWh, the customers’ profits are determined using 

(9) and the results are plotted against electricity 

quantity reduction in Fig. 12. Also in this figure, the 

maximum customer profits are indicated as black star 

points for different incentive prices 

. 

Fig. 12 shows, at a given incentive price offered by 

utilities, the profit of customers varies with electricity 

quantity reduction. From this variation, an optimum 

point can be determined by maximizing customer 

profit. For example, at an incentive price of $60/MW, 

customers tend to response by reducing 1152MW 

(10.9%) and accordingly achieve a maximum profit. 

At the same time, the change of incentive price will 

lead to variation of total financial loss for utilities. The 

changes of total financial loss for utilities and profit for 

customer are obtained and represented in Fig. 13. 

It can be seen from Fig. 13 that both financial loss 

for utilities and profit for customers experience great 

variation when changing the incentive price. When the 

incentive price is less than a certain value (i.e., Pc = 

100
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$10/MWh), customers may not interest in response to 

the scheme, thus both the financial loss for utilities and 

profit for customers are constant. After this price (i.e., 

when Pc is greater than $10/MWh), the profit for 

customers increases dramatically. At the same time, 

financial loss for utilities experience drastic drop when 

incentive price increase from $10/MWh to $117/MWh. 

When incentive price continues to increase above 

$117/MWh, while customers’ profit keeps rising 

dramatically, utilities’ losses change direction and 

increase slightly. Since the incentive price is offered by 

utilities, they may consider operating the scheme at a 

price of $117/MWh, which result in minimum loss of 

utilities. It is noted that this minimum loss is negative 

indicating that utilities earn profit again when applying 

the proposed scheme. 

This analysis may be significantly meaningful to 

the utilities since it can evaluate the possible response 

of customer and announce an appropriate incentive 

price for the customer incentive scheme. 

5. Conclusion 

In this paper, a customer incentive scheme is proposed 

for building an effective DR program. In this program, 

an incentive scheme is proposed for utilities with an 

incentive price to encourage customers to reduce their 

electricity demand to a certain level. An optimization 

problem is formulated to minimize the utility loss 

based on changing the offered incentive price. Linear 

approach is employed to solve the problem and the 

optimum incentive price is determined at the point 

where utility loss is at a minimum level. 

Furthermore, it is revealed that customers’ 

responses do have strong impacts on the optimization 

process of the proposed scheme. Consequently, two 

typical customers’ response scenarios which are linear 

response and restricted response are investigated. It has 

been found that with higher sensitivity level, the 

optimum incentive price is lower, and the utility loss 

becomes lower as well. 

 
Fig. 12. Changes of customer profit against electricity 

quantity reduction for typical incentive prices of 

$40/MWh, $60/MWh and $80/MWh 

 

A small dataset for NSW, Australia is employed as 

a case study to investigate the effectiveness of the 

proposed incentive scheme. The obtained results show 

that the proposed scheme can successfully help utilities 

to minimize their financial losses and assist customers 

to maximize their profit. 

 
Fig. 13. Total financial losses for a utility and customer 

profits at different incentive prices 
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